SGZ-12-8-8-2-3-001

SGZ-12-8-8-2-3-001 type isolators are dedicated for making a galvanic isolation between input measuring circuit and output circuit. It acts as universal isolator with user-adjustable standards of input and output signals. Settings of input and output standards $0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}, 0 \ldots 10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$ are performed using two code switches: P1, P2 placed inside the housing. A two-position switch is located on the input side and a three-position switch is located on the output side. The isolator can function as a power supplyisolator for two-wire transmitters controlling separator input (terminals 1,3). The device needs 24 V DC of power supply. Input, output and supply circuits are mutually isolated. The using of isolators allows to reduce the impact of interference on drivers, controllers and recorders and ensures the safety of these devices isolating their inputs from hazards resulting from cooperation with distant signal sources (lightning, power energy, radio frequency interference, potential differences between the object and central unit). Possibility of changing of any input signal into any output signal makes it easy to fit devices working in various standards. User is allowed to correct zero point and measuring range, using two potentiometers mounted on the front panel of housing.

TECHNICAL DATA

Power supply / consumption	$21 \div 28 \mathrm{VDC} / 60 \mathrm{~mA}$
Input signal (programmable by DIP switch)	current: $0 \div 20 \mathrm{~mA}, 4 \div 20 \mathrm{~mA}$ voltage: $0 \div 10 \mathrm{~V}, 2 \div 10 \mathrm{~V}$
Output signal (programmable by DIP switch)	current: $0 \div 20 \mathrm{~mA}, 4 \div 20 \mathrm{~mA}$ voltage: $0 \div 10 \mathrm{~V}, 2 \div 10 \mathrm{~V}$
Auxiliary supply	24V DC
Load resistance	```current: 0\div20mA, 4\div20mA, resistance 0\div750\Omega voltage: 0\div10V, 2\div10V, resistance }\geq4\textrm{k} error: }\pm0.02```
Galvanic isolation	$2 \mathrm{kV}, 50 \mathrm{~Hz}$ or equivalent
Accuracy	$\pm 0.15 \%$
Time constant	0.2s
Temperature drift	$\pm 0.015 \% /{ }^{\circ} \mathrm{C}$
Nonlinearity	$\pm 0.05 \%$
IP protection	IP 40
Operating temperature	$-5^{\circ} \mathrm{C} \div+55^{\circ} \mathrm{C}$
Dimensions (WxHxD)	$12.5 \times 99 \times 114.5 \mathrm{~mm}$
Mounting	TS-35 DIN rail

TYPICAL CONNECTIONS

Galvanic isolation between input / output / power supply circuits

CASE DIMENSIONS

SETTING OF CODE SWITCHES FOR SELECTED INPUT AND OUTPUT STANDARDS

The input and output standard settings are made by setting the code switch levers (one set of switches on the input terminal side and one set of switches on the output terminal side) according the table below.
"Zero" and „Range" calibration are made within 8\% with the potentiometers accessible through the holes in the front panel. On request, other input and output signals can be set.

Switch position

Input range	Connector	Output range	Connector	P1		P2		
				1	2	1	2	3
$0 . . .20 \mathrm{~mA}$	+1, -2	$0 . . .20 \mathrm{~mA}$	+5, -6	OFF	OFF	OFF	ON	OFF
0... 20 mA	+1, 2	4... 20 mA	+5, 6	ON	OFF	OFF	ON	OFF
$0 . . .20 \mathrm{~mA}$	+1, -2	$0 . .10 \mathrm{~V}$	+5, -6	OFF	OFF	ON	OFF	ON
$0 . . .20 \mathrm{~mA}$	+1, -2	2... 10 V	+5, -6	ON	OFF	ON	OFF	ON
$4 . . .20 \mathrm{~mA}$	+1, -2	$0 . . .20 \mathrm{~mA}$	+5, -6	OFF	ON	OFF	ON	OFF
$4 . . .20 \mathrm{~mA}$	+1, -2	4... 20 mA	+5, -6	OFF	OFF	OFF	ON	OFF
$4 . . .20 \mathrm{~mA}$	+1, -2	$0 . .10 \mathrm{~V}$	+5, -6	OFF	ON	ON	OFF	ON
$4 . . .20 \mathrm{~mA}$	+1, -2	2... 10 V	+5, -6	OFF	OFF	ON	OFF	ON
$0 . .10 \mathrm{~V}$	+4, -2	0... 20 mA	+5, -6	OFF	OFF	OFF	ON	OFF
$0 . . .10 \mathrm{~V}$	+4, -2	4... 20 mA	+5, -6	ON	OFF	OFF	ON	OFF
$0 . . .10 \mathrm{~V}$	+4, -2	$0 . .10 \mathrm{~V}$	+5, -6	OFF	OFF	ON	OFF	ON
0... 10 V	+4, -2	2... 10 V	+5, -6	ON	OFF	ON	OFF	ON
2... 10 V	+4, -2	0... 20 mA	+5, -6	OFF	ON	OFF	ON	OFF
2...10 V	+4, -2	4... 20 mA	+5, -6	OFF	OFF	OFF	ON	OFF
2... 10 V	+4, -2	$0 . .10 \mathrm{~V}$	+5, -6	OFF	ON	ON	OFF	ON
2... 10 V	+4, -2	2... 10 V	+5, -6	OFF	OFF	ON	OFF	ON
Two-wire converter	+3, -1	0... 20 mA	+5, -6	OFF	ON	OFF	ON	OFF
Two-wire converter	+3, -1	4... 20 mA	+5, -6	OFF	OFF	OFF	ON	OFF
Two-wire converter	+3, -1	0... 10 V	+5, -6	OFF	ON	ON	OFF	ON
Two-wire converter	+3, -1	2... 10 V	+5, -6	OFF	OFF	ON	OFF	ON

ORDERING

