

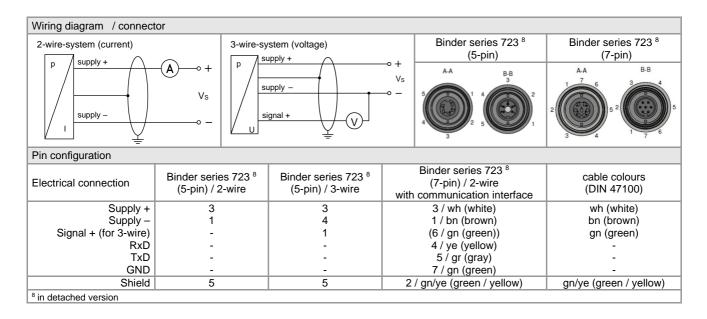
CPA-P-308i

precision hydrostatic level transmitter
 detachable probe, diameter 35 mm
 nominal pressure: from 0...4 mH₂O up to 0...200 mH₂O
 output signals: 2-wire: 4...20mA; 3-wire: 0...10V
 stainless steel probe and sensor
 accuracy 0.1 % span
 turn-down 10.1
 excellent accuracy and long term stability
 optional: different kinds of cables and seals

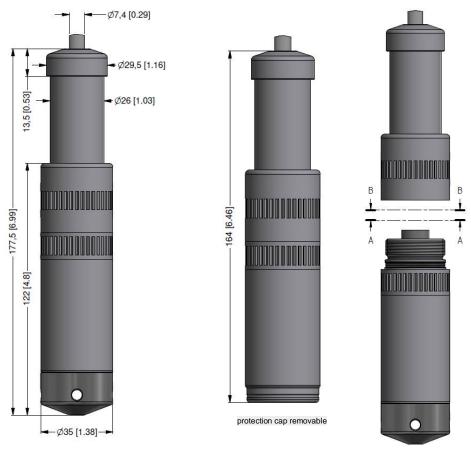
The detachable precision stainless steel probe **CPA-P-308i** is designed for continuous level measurement in water and low-viscosity fluids. The signal processing of sensor signal is done by digital electronics with 16-bit analog digital converter. Consequently it is possible to conduct an active compensation of sensor intrinsic deviations from normal condions like nonlinearity and thermal error. In order to facilitate stock-keeping and maintenance the transmitter body is plugged to the cable assembly with a connector and can be changed easily.

PREFERRED AREAS OF USE ARE

Water / filtrated sewage ground water level measurement level measurement in wells and open waters / rain spillway basin level measurement in container water treatment plants water recycling


TECHNICAL DATA

Nominal pressure gauge	[bar]	0.40	1	2	4	10	20			
	[mH ₂ O]	4	10	20	40	100	200			
Overpressure	[hin [20]	2	5	10	20	40	80			
Burst pressure	[bar]	3	7.5	15	25	50	120			
max. ambient pressure (hou		40 bar	1.0	10						
¹ On customer request we adjust			ssibility by soft	ware on the require	ed pressure range					
Output signal / Supply				· · ·						
Standard		2-wire: 4 20 mA	/ Vs = 12		with RS-232 cor	nmunication inte	rface			
Options		2-wire: 4 20 mA	· •		ommunication in					
		3-wire: 0 10 V / Vs = 14 36 Vpc								
		$0 \dots 10 \text{ V/Vs} = 14 \dots 36 \text{ Vpc}$ with communication interface								
Performance		·								
Accuracy		IEC 60770 ² : ± 0.1	% span							
Performance after turn-down	(TD)	no change of accura								
i sinsimunos unor turri uom		I no change of accura	icy							
	(ID)	formula for accuracy		for nominal pres	sure gauge 0	.40 bar see note	3):			
- TD 5:1	(10)		calculating		sure gauge 0	40 bar see note	3):			
- TD 5:1	(10)	formula for accuracy $\pm [0.1 + 0.015 \times tut]$ with turn-down = nor	v calculating (rn-down] % s minal pressu	ipan re range / adjust	ed range	40 bar see note	3):			
- TD 5:1	m (10)	formula for accuracy ± [0.1 + 0.015 x tu	v calculating (rn-down] % s minal pressu	ipan re range / adjust	ed range	.40 bar see note	3):			
- TD 5:1 - TD > 5:1	(TD)	formula for accuracy \pm [0.1 + 0.015 x tu with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10	v calculating rn-down] % s minal pressu cy can be cal c) % span viz	pan re range / adjust culated for turn-c the accuracy is	ed range down 10:1: ; ± 0.25 % spa	in	3):			
- TD 5:1 - TD > 5:1 Permissible load		formula for accuracy \pm [0.1 + 0.015 x tu with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max}	v calculating (rn-down] % s minal pressu cy can be cal) % span viz = [(V _S – V _S mi	pan re range / adjust culated for turn-o the accuracy is n) / 0.02 A] W/ v	ed range down 10:1: ; ± 0.25 % spa	in	3):			
- TD 5:1 - TD > 5:1 Permissible load		formula for accuracy \pm [0.1 + 0.015 x tu with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max} supply: 0.05 %	v calculating (rn-down] % s minal pressu cy can be cal- 0) % span viz = $[(V_s - V_{s m})]$ span / 10 V	pan re range / adjust culated for turn-c . the accuracy is n) / 0.02 A] W/ v load:	ed range down 10:1: <u>±</u> 0.25 % spa oltage 3-wire: R 0.05 % span /	in _{min} = 10 kW kW	3):			
- TD 5:1 - TD > 5:1		formula for accuracy \pm [0.1 + 0.015 x tu with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max} supply: 0.05 % \pm (0.1 x turn-down	v calculating (rn-down] % s minal pressu cy can be cal)) % span viz = $[(V_s - V_{s m})$ span / 10 V)) % span / ye	pan re range / adjust culated for turn-o . the accuracy is n) / 0.02 A] W/ v load: ear / Respo	ed range down 10:1: 5 ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20	n _{min} = 10 kW kW 0 msec	3):			
- TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability		formula for accuracy \pm [0.1 + 0.015 x tui with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max} supply: 0.05 % \pm (0.1 x turn-down following parameters	v calculating (rn-down] % s minal pressu cy can be cal- 0) % span viz = $[(V_S - V_{S m})$ span / 10 V 0) % span / ye s can be adju	pan re range / adjust culated for turn-o . the accuracy is n) / 0.02 A] W/ v load: ear / Respo usted (interface /	ed range down 10:1: 5 ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20	n _{min} = 10 kW kW 0 msec	3):			
- TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability		formula for accuracy \pm [0.1 + 0.015 x tui with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max} supply: 0.05 % \pm (0.1 x turn-down following parameters electronic damping:	v calculating (rn-down] % s minal pressu cy can be cal- 0) % span viz = $[(V_s - V_{s m})$ span / 10 V 0) % span / ye s can be adju 0 100 sec	pan re range / adjust culated for turn-o . the accuracy is n) / 0.02 A] W/ v load: ear / Respo usted (interface /	ed range down 10:1: <u>±</u> 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede	n _{min} = 10 kW kW 0 msec	3):			
- TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability Adjustability		formula for accuracy \pm [0.1 + 0.015 x tui with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max} supply: 0.05 % \pm (0.1 x turn-down following parameters electronic damping: offset: 0 90 % spa	v calculating (rn-down] % s minal pressu cy can be cal- 0) % span viz = $[(V_s - V_{s m})$ span / 10 V 0) % span / ye s can be adju 0 100 sec an tu	pan re range / adjust culated for turn-o . the accuracy is n) / 0.02 A] W/ v load: ear / Respo usted (interface / rn-down of span:	ed range down 10:1: 5 ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1	n _{min} = 10 kW kW 0 msec	3):			
- TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability Adjustability ² accuracy according to EN IEC	62828-2-1	formula for accuracy \pm [0.1 + 0.015 x tu with turn-down = nor e.g. follwing accuracy \pm (0.1 + 0.015 x 10 current 2-wire: R _{max} supply: 0.05 % \pm (0.1 x turn-down following parameters electronic damping: offset: 0 90 % spatiant	v calculating (rn-down] % s minal pressu cy can be cal- 0) % span viz = $[(V_s - V_{s m})$ span / 10 V 1) % span / ye s can be adju 0 100 sec an tu n-linearity, hyst	pan re range / adjust culated for turn-o the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit	ed range down 10:1: $\pm 0.25 \%$ spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1	n _{min} = 10 kW kW 0 msec	3):			
- TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability Adjustability ² accuracy according to EN IEC ³ nominal pressure gauges 0,4	62828-2– I 40 bar are e	formula for accuracy $\pm [0.1 + 0.015 \times turnov tutnov tutnov turnov turnov turnov turnov tut$	v calculating (rn-down] % s minal pressu cy can be calculation) % span viz $= [(V_s - V_{s m})$ span / 10 V) % span / ye s can be adju 0 100 sec an turn-linearity, hysto loculation of acc	pan re range / adjust culated for turn-c . the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit suracy is as follows	ed range down 10:1: ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1 y) s:	in min = 10 kW kW 0 msec ed ⁴)	3):			
- TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability Adjustability ² accuracy according to EN IEC ³ nominal pressure gauges 0,4 ± (0.1 + 0.02 x turn-down) % s	; 62828-2− I 40 bar are ∈ span e.g. to	formula for accuracy $\pm [0.1 + 0.015 \times tur)$ with turn-down = nor e.g. follwing accuracy $\pm (0.1 + 0.015 \times 10^{-1})$ current 2-wire: R _{max} supply: 0.05 % $\pm (0.1 \times turn-down)$ following parameters electronic damping: offset: 0 90 % spa imit point adjustment (nor wicuded; for these the ca rn-down 3:1: $\pm (0.1 + 0^{-1})$	v calculating of rn-down] % s minal pressu cy can be cal-)) % span viz = $[(V_s - V_{smi})$ span / 10 V)) % span / ye s can be adju 0 100 sec an tu n-linearity, hys loculation of acc 0.02 x 3) % spi	pan re range / adjust culated for turn-o . the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit curacy is as follows an viz. the accurac	ed range down 10:1: ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1 y) x: y is ± 0.16 % sp	n min = 10 kW kW 0 msec d ⁴) an				
 TD 5:1 TD > 5:1 Permissible load Influence e ects Long term stability Adjustability ² accuracy according to EN IEC ³ nominal pressure gauges 0,4 ± (0.1 + 0.02 x turn-down) % s ⁴ software, interface and cable r 	62828-2-1 40 bar are e span e.g. to must separa	formula for accuracy $\pm [0.1 + 0.015 \times tur)$ with turn-down = nor e.g. follwing accuracy $\pm (0.1 + 0.015 \times 10^{-1})$ current 2-wire: R _{max} supply: 0.05 % $\pm (0.1 \times turn-down)$ following parameters electronic damping: offset: 0 90 % spa imit point adjustment (nor wicuded; for these the ca rn-down 3:1: $\pm (0.1 + 0^{-1})$	v calculating of rn-down] % s minal pressu cy can be cal-)) % span viz = $[(V_s - V_{smi})$ span / 10 V)) % span / ye s can be adju 0 100 sec an tu n-linearity, hys loculation of acc 0.02 x 3) % spi	pan re range / adjust culated for turn-o . the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit curacy is as follows an viz. the accurac	ed range down 10:1: ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1 y) x: y is ± 0.16 % sp	n min = 10 kW kW 0 msec d ⁴) an				
 TD 5:1 TD > 5:1 TD > 5:1 Permissible load Influence e ects Long term stability Adjustability ² accuracy according to EN IEC ³ nominal pressure gauges 0,4 ± (0.1 + 0.02 x turn-down) % s ⁴ software, interface and cable r Thermal e ects (O set and 	62828-2– I 40 bar are e span e.g. to must separa d Span)	formula for accuracy $\pm [0.1 + 0.015 \times tu]$ with turn-down = nor e.g. follwing accurac $\pm (0.1 + 0.015 \times 10^{-1})$ current 2-wire: R _{max} supply: 0.05 % $\pm (0.1 \times turn-down$ following parameters: electronic damping: offset: 0 90 % space imit point adjustment (nor ixcluded; for these the ca rn-down 3:1: $\pm (0.1 + 0)$ te be ordered (software i	v calculating of rn-down] % s minal pressu cy can be cal-)) % span viz = $[(V_s - V_{s m})$ span / 10 V)) % span / ye s can be adju 0 100 sec an tur n-linearity, hyst loulation of acc 0.02 x 3) % spi s compatible w	pan re range / adjust culated for turn-c . the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit suracy is as follows an viz. the accurac vith Windows® 95, s	ed range down 10:1: $\pm 0.25 \%$ spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1 y) :: y is $\pm 0.16 \%$ sp 28, 2000, NT from	n min = 10 kW kW 0 msec d ⁴) an				
- TD 5:1 - TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability Adjustability 2 accuracy according to EN IEC 3 nominal pressure gauges 0,4 \pm (0.1 + 0.02 x turn-down) % s 4 software, interface and cable r Thermal e ects (O set and Tolerance band [9]	62828-2– I 40 bar are e span e.g. to must separa d Span) % span]	formula for accuracy $\pm [0.1 + 0.015 \times tul)$ with turn-down = nor e.g. follwing accuracy $\pm (0.1 + 0.015 \times 10^{-1})$ current 2-wire: R _{max} supply: 0.05 % $\pm (0.1 \times turn-down)$ following parameters: electronic damping: offset: 0 90 % space imit point adjustment (nor ixcluded; for these the car rn-down 3:1: $\pm (0.1 + 0)$ the be ordered (software in $\pm (0.2 \times turn-down)$	(v calculating of rn-down] % s minal pressu (v can be cal- (v) span viz = $[(V_s - V_{s m})$ span / 10 V (v) % span / ye (v)	pan re range / adjust culated for turn-c . the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit suracy is as follows an viz. the accurac vith Windows® 95, 9	ed range down 10:1: <u><u></u> ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1 y) <u><u></u> y) <u><u></u> y) <u></u> s: y is ± 0.16 % sp 98, 2000, NT from ge -20 70 °C</u></u></u>	n min = 10 kW kW 0 msec d ⁴) an				
- TD 5:1 - TD 5:1 - TD > 5:1 Permissible load Influence e ects Long term stability Adjustability 2 accuracy according to EN IEC 3 nominal pressure gauges 0,4 \pm (0.1 + 0.02 x turn-down) % s 4 software, interface and cable r Thermal e ects (O set and Tolerance band [9]	62828-2– I 40 bar are e span e.g. to must separa d Span)	formula for accuracy $\pm [0.1 + 0.015 \times tu]$ with turn-down = nor e.g. follwing accurac $\pm (0.1 + 0.015 \times 10^{-1})$ current 2-wire: R _{max} supply: 0.05 % $\pm (0.1 \times turn-down$ following parameters: electronic damping: offset: 0 90 % space imit point adjustment (nor ixcluded; for these the ca rn-down 3:1: $\pm (0.1 + 0)$ te be ordered (software i		pan re range / adjust culated for turn-c . the accuracy is n) / 0.02 A] W/ v load: ear / Respo isted (interface / rn-down of span: eresis, repeatabilit curacy is as follows an viz. the accurac vith Windows® 95, 9 compensated rang	ed range down 10:1: <u><u></u> ± 0.25 % spa oltage 3-wire: R 0.05 % span / nse time: ca. 20 software neede max. 10:1 y) :: y is ± 0.16 % sp 28, 2000, NT from ge -20 70 °C ge -20 70 °C</u>	n min = 10 kW kW 0 msec d ⁴) an				


Electrical protection ⁵								
Short-circuit protection	permanent							
Reverse polarity protection	no damage, but also no function							
Lightning protection	2-wire: integrated 3-wire: without							
Electromagnetic compatibility	emission and immunity according to EN 61326							
⁵ additional external overvoltage protection	on unit in terminal box KL 1 or KL 2 with atmospheric pressure reference available on request							
Electrical connection								
Cable with sheath material ⁶	PVC (-5 70 °C) grey (-25 70 °C in fixed condition) Ø 7,4 mm PUR (-25 80 °C) black (with drinking water certificate) Ø 7,4 mm FEP 7 (-25 75 °C) black Ø 7,4 mm							
Bending radius	static installation: 10-fold cable diameter, dynamic application: 20-fold cable diameter							
⁶ shielded cable with integrated air tube for ⁷ do not use freely suspended probes with	or atmospheric pressure reference n an FEP cable if e lects due to highly charging processes are expected							
Materials (media wetted)								
Housing	stainless steel 1.4404 (316L)							
Seals	FKM, EPDM, others on request							
Diaphragm	stainless steel 1.4435 (316L)							
Cable sheath / Protection cap	PVC, PUR, FEP, others on request / POM-C							
Miscellaneous								
urrent consumption signal output current: max. 25 mA								
Weight	approx. 250 g (without cable)							
gress protection IP 68								
CE-conformity	EMC Directive: 2014/30/EU							

ELECTRICAL CONNECTION

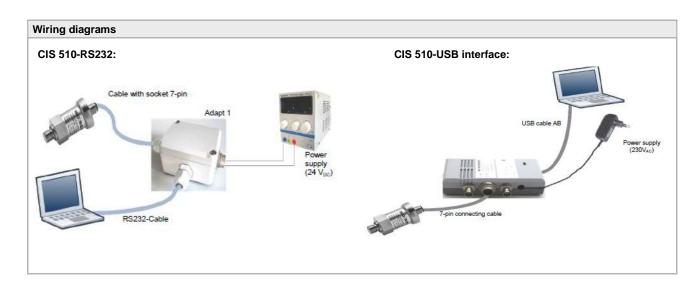
DIMENSION DRAWINGS

detached version

Total length of devices with accuracy 0.1 % span IEC 60770 increases by 16 mm!

ACCESSORIES

Mounting flange with	cable gland							
Technical data								
Suitable for	all probes		cable gland M16x1.5 with seal insert (for cable- 4 11 mm)					
Flange material	stainless steel 1.4404 (316L)							
Material of cable gland	standard: brass, nickel plated on request: stainless steel 1.4305 (303							
Seal insert	material: TPE (ingress protection IP 68)	n x d2						
Hole pattern	according to DIN 2507							
Version	Size (in mm)	Weight						
DN25 / PN40	D = 115, k = 85, b = 18, n = 4, d= 14	1.4 kg						
DN50 / PN40	D = 165, k = 125, b = 20, n = 4, d= 18	3.2 kg						
DN80 / PN16	D = 200, k = 160, b = 20, n = 8, d= 18	4.8 kg	D					
Ordering type	!	Ordering code						
DN25 / PN40 with cable gland brass, nickel plated		ZMF2540						
DN50 / PN40 with cable gland brass, nickel plated		ZMF5040						
DN80 / PN16 with cable gland brass, nickel plated		ZMF8016						
Cable clamp								
Technical Data								
Suitable for	all probes with cable 5.5 10.5 mm							
Material	standard: steel, zinc plated optionally: stainless steel 1.4301 (304)							
Weight	approx. 160 g							
Ordering type		Ordering code						
Terminal clamp, of steel, zinc plated		1003440						
Terminal clamp, of stair	nless steel 1.4301 (304)	1000278						


Programming kits for i-devices: CIS 510-RS232 and CIS 510-USB

CIS 510-RS232

CIS 510-USB

Supply V_s	for CIS 510-RS232: for CIS 510-USB:	24V _{DC} 24V _{DC}
Package contents	Programming software "Co operating manual CIS 510-RS232: Adapt 1 RS-232 connecting cable (for 7-pin connecting cable (for CIS 510-USB: Adapt 5	for PC)
	USB connecting cable (for 7-pin connecting cable (for	measuring device)
System requirement	For the installation of the so interface (RS 232) or USB-	oftware, a Windows® PC (95, 98, ME, 2000, NT, XP) with serial interface is required

Ordering codes	
-	
Version:	Ordering code:
Adapt 1 with RS232 connecting cable for PC	CIS 510-RS232
Adapt 5 with USB connecting cable for PC	CIS 510-USB
Windows [®] is a registered trade mark of Microsoft Corporation	

CPA-P-308.4

ORDER CODE

			CPA-P-308i-			- 🗆 - 🗖	- 🗌 - [-		
Pressure											
in bar			4 4	0							
in m H ₂ O			4 4								
Input	[mH₂O]	[bar]	· ·								
	0 4	00,4		4 0 0 0							
	0 10	0 1		1 0 0 1							
	0 20	02		2001							
	0 40	04		4 0 0 1							
	0 100	0 10		1002							
	0 200	0 20		2002							
Customer	0 200	020		99999							
Housing mat	terial			0 0 0 0							
	el 1.4404 (316 l	L)			1						
Diaphragm n		/			-						
	el 1.4435 (316 l	L)			1						
Output signa		,									
4 20 mA / 2						1					
010V/3-						3					
Customer						9					
Seals											
Viton (FKM)						1					
EPDM						3					
Customer						9					
Electrical co	nnection					1					
Without cable							0				
PVC - cable (arev. Ø 7.4 mn	n, price for 1 m) ¹					1				
		m, price for 1 m) ¹					2				
		th (black, Ø 7,4 mm, price	for 1 m) ¹				3				
		(blue, Ø 7.4 mm, price for	,				4				
Customer							9				
Accuracy											
0,1 % - stand	ard range ²							1			
0,1 % - stand	ard range inclu	ding Calibration Certificate	•					Р			
0,1 % - custo	mer range							1			
0,1 % - custo	mer range inclu	uding Calibration Certificat	e					н			
0,2 % (P _N < 0	,1 bar)							В			
Customer								9			
Cable length	1										
in m								9	99		
Special version	ions										
Standard										1 1 1	
		cation port inside the probe								1 2 1	
		cation via cable, max. leng	h 20 m)							630	
-	ver supply 9									1 1 A	
	temperature se				_	_				6 1 7	_
		ole transmitter									
	np - zinc platec										1003440
	np - Stainless S										1000278
-	ew PG16 - plas	tic									5002200
Flange DN25 /											ZMF2540
Flange DN50 /											ZMF5040
Flange DN80 /	/ PN16										ZMF8016
Software	DO									010	540 D0005
		ting cable for PC									510-RS232
Adapt 5 with	USB connecting	g cable for PC								C	IS 510-USB

1 - cable with integrated ventilation tube for atmospheric pressure reference

2 - available on request: calibration of individual pressure range higher than 400 mbar with accuracy 0.1 %

3 - software, interface and cable have to be order separately (ordering code: CIS-G; software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or newer and XP)

4 - maximum length of PVC cable – 25 m, PUR, FEP, TPE – 40 m

Manufacturer reserves the right to change sensor specifications without further notice.